Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks

نویسندگان

  • Chung-Ming Kuan
  • CHUNG-MING KUAN
چکیده

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. SUMMARY In this paper we investigate the out-of-sample forecasting ability of feedforward and recurrent neural networks based on empirical foreign exchange rate data. A two-step procedure is proposed to construct suitable networks, in which networks are selected based on the predictive stochastic complexity (PSC) criterion, and the selected networks are estimated using both recursive Newton algorithms and the method of nonlinear least squares. Our results show that PSC is a sensible criterion for selecting networks and for certain exchange rate series, some selected network models have significant market timing ability and/or significantly lower out-of-sample mean squared prediction error relative to the random walk model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Forecasting Sunspot Numbers with Neural Networks

This paper presents a feedforward neural network approach to sunspot forecasting. The sunspot series were analyzed with feedforward neural networks, formalized based on statistical models. The statistical models were used as comparison models along with recurrent neural networks. The feedforward networks had 24 inputs (depending on the number of predictor variables), one hidden layer with 20 ...

متن کامل

Forecasting Iran’s Rice Imports during 2009-2013

In the present study Iran’s rice imports trend is forecasted, using artificial neural networks and econometric methods, during 2009 to 2013, and their results are compared. The results showed that feet forward neural network leading with less forecast error and had better performance in comparison to econometric techniques and also, other methods of neural networks, such as Recurrent networks a...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994